Acta Crystallographica Section D

Biological

Crystallography
ISSN 0907-4449

Hongliang Xu, ${ }^{\text {a* }}$ Herbert A. Hauptman, ${ }^{\text {a }}$ Charles M. Weeks ${ }^{\text {a }}$ and Russ Miller ${ }^{\text {a,b }}$

${ }^{\text {a }}$ Hauptman-Woodward Medical Research Institute, 73 High Street, Buffalo, NY 14203, USA, and ${ }^{\mathbf{b}}$ Department of Computer Science, State University of New York, Buffalo, NY 14260, USA

Correspondence e-mail: xu@hwi.buffalo.edu

P1 Shake-and-Bake: can success be guaranteed?

The multi-trial direct-methods procedure known as Shake-and-Bake has been applied to three small proteins (alpha-1 peptide, vancomycin and lysozyme) that crystallize in space group $P 1$. Phase refinement was accomplished through parameter-shift optimization using both the cosine and exponential forms of the minimal function. By extending error-free data to sufficiently high resolution, 100% convergence of trial structures to solution could be achieved in all three cases by using the exponential minimal function and a shift angle in the range $130-150^{\circ}$. These results suggest optimum parameters for other $P 1$ structures and emphasize the importance of collecting data to the highest possible resolution.

Received 19 August 1999
Accepted 19 November 1999

1. Introduction

By automatically and repetitively alternating phase refinement in reciprocal space with a peak-picking protocol that imposes constraints in real space, the Shake-and-Bake algorithm (Weeks et al., 1994) has increased the size of structures solvable by multi-trial direct methods to more than 1000 unique non- H atoms (Deacon et al., 1998). ${ }^{1}$ During the phaserefinement step, a parameter-shift optimization strategy (Bhuiya \& Stanley, 1963) is generally used to reduce the value of the cosine minimal function,

$$
\begin{align*}
R(\varphi)= & \left(\sum_{\mathbf{H}, \mathbf{K}} A_{\mathbf{H K}}\right)^{-1} \\
& \times \sum_{\mathbf{H}, \mathbf{K}} A_{\mathbf{H K}}\left[\cos \varphi_{\mathbf{H K}}-\frac{I_{1}\left(A_{\mathbf{H K}}\right)}{I_{0}\left(A_{\mathbf{H K}}\right)}\right]^{2} \tag{1}
\end{align*}
$$

(Debaerdemaeker \& Woolfson, 1983; Hauptman, 1991; DeTitta et al., 1994), written here in a truncated form without negative quartets, since such quartets are expected to contribute little useful phasing information for protein-sized molecules. (1) measures the mean-square difference between (i) the cosine values of the three-phase structure invariants,

$$
\begin{equation*}
\varphi_{\mathbf{H K}}=\varphi_{\mathbf{H}}+\varphi_{\mathbf{K}}+\varphi_{-\mathbf{H}-\mathbf{K}}, \tag{2}
\end{equation*}
$$

computed using a set of trial phases and (ii) the expected values of the same invariants based on a ratio of modified Bessel functions (Germain et al., 1970). The associated parameters $A_{\mathbf{H K}}$ are defined by

$$
\begin{equation*}
A_{\mathbf{H K}}=\left(2 N^{-1 / 2}\right)\left|E_{\mathbf{H}} E_{\mathbf{K}} E_{\mathbf{H}+\mathbf{K}}\right|, \tag{3}
\end{equation*}
$$

[^0]where the $|E|$ s are the normalized structurefactor magnitudes and N is the number of atoms, assumed identical, in the unit cell. More recently, an exponential form of the minimal function,
\[

$$
\begin{align*}
m(\varphi)= & \left(\sum_{\mathbf{H}, \mathbf{K}} W_{\mathbf{H K}}\right)^{-1} \sum_{\mathbf{H}, \mathbf{K}} W_{\mathbf{H K}} \\
& \left\{\exp \left[\mu A_{\mathbf{H K}} \cos \eta \cos \left(\varphi_{\mathbf{H K}}+\eta\right)\right]\right. \\
& \left.-\frac{I_{0}\left(A_{\mathbf{H K}} X\right)}{I_{0}\left(A_{\mathbf{H K}}\right)}\right\}^{2}, \tag{4}
\end{align*}
$$
\]

has been proposed, where

$$
\begin{align*}
X & =\left[\mu(\mu+2) \cos ^{2} \eta+1\right]^{1 / 2} \tag{5}\\
Y & =\left[4 \mu(\mu+1) \cos ^{2} \eta+1\right]^{1 / 2} \tag{6}
\end{align*}
$$

and

$$
\begin{equation*}
W_{H K}=\left[\frac{I_{0}\left(A_{\mathbf{H K}} Y\right)}{I_{0}\left(A_{\mathbf{H K}}\right)}-\frac{I_{0}^{2}\left(A_{\mathbf{H K}} X\right)}{I_{0}^{2}\left(A_{\mathbf{H K}}\right)}\right]^{-1} . \tag{7}
\end{equation*}
$$

This exponential minimal function has been shown to be superior to the cosine form of the minimal function when applied to structures in space group P1 (Hauptman et al., 1999). A good value for the parameter η has been determined empirically to be 20° and the parameter μ is dependent on $\max _{\mathbf{H}, \mathbf{K}} A_{\mathbf{H K}}$ in a known way.
$P 1$ is a unique space group. Since there is no symmetry other than unit-cell translations, the origin can be located anywhere and the response of $P 1$ structures to direct-phasing methods is often different from that of structures in other space groups (Chang et al., 1997; Deacon et al., 1998). In particular, P1 structures frequently exhibit an unusually high percentage of solutions from SnB, especially if a single large shift angle is applied during

Table 1
Test data sets and experimental parameters.

Structure	Unique non-H atoms	'Heavy' atoms	Phases	Triplets	Peaks	Cycles
Alpha-1	471	1 Cl	4000	40000	300	500
Vancomycin	547	12 Cl	4000	40000	150	500
Lysozyme	1295	10 S	11100	111000	350	750

et al., 1995), which compares the invariant values for trial phase sets to the values for the true phase set. In all cases, solutions identified in this fashion were correlated with solutions identified by constrained minimalfunction values. The success rate (SR) was defined as the percentage of trial structures that go to
parameter-shift optimization. The present study was undertaken to determine the theoretical limits of success for Shake-andBake applications in P1.

2. Materials and methods

The Shake-and-Bake procedure, using both the cosine and exponential minimal functions, was applied to the data from $P 1$ crystals of three small proteins using the computer program SnB version 2.0 (Weeks \& Miller, 1999a). The overall completeness and maximum resolution of these experimental data sets were as follows: alpha-1 peptide (86% complete, $d_{\text {max }}=0.9 \AA$; Privé et al., 1999), vancomycin (80% complete, $d_{\text {max }}=0.97 \AA$; Loll et al., 1998) and lysozyme (68% complete, $d_{\text {max }}=0.85 \AA$; Deacon et al., 1998). Complete error-free data sets to very high resolutions were also generated for these structures using the known atomic coordinates and the program $E G E N$ (R. Blessing, personal communication). Structure sizes and the values used for the major SnB parameters (phases, invariants, peaks picked and refinement cycles) are summarized in Table 1. Parameter-shift angles of 10, $20,30, \ldots, 180^{\circ}$ were applied. Solutions were unequivocally identified on the basis of the cosine-invariant figure of merit (Weeks
solution; the standard deviation of the success rate was calculated using Bernoulli's distribution, where $\sigma_{\mathrm{SR}}=(n p q)^{1 / 2}$, with n being the number of trials, p being the success rate expressed as a fraction and q being the failure rate.

3. Results

The results of the SnB applications to the three experimental data sets are summarized in Table 2. When the default double 90° shift conditions for acentric space groups were used, solutions were obtained only for alpha- 1 peptide. Fortunately, single shifts of more than 90° were more productive and permitted the solution of all three structures. In fact, by using an optimum shift angle of 150°, the success rate for lysozyme increased to more than 25%. Replacing the experimental data with error-free data (but adding no more reflections) did not lead to any improvement in success rate for alpha- 1 or vancomycin, indicating that no significant measurement errors had been made. On the other hand, using complete (at the nominal resolution of the experimental data) errorfree data resulted in a very significant improvement in all three cases, with lysozyme having an astounding success rate of 99% ! It seems likely that the adverse effects

Figure 1
Success rates as a function of single-shift size sampled in increments of 10° for the cosine and exponential minimal functions. Each point represents 100 trial structures. Complete error-free data sets were used.
of missing phases are magnified by the even larger number of missing invariant relationships.

The foregoing observations served to motivate additional investigation designed to determine whether it was possible to find circumstances where all trials would converge to solution for all three structures. In order to consider the effect that resolution might play, additional error-free highresolution data were generated for alpha-1 and vancomycin. The success rates for SnB applications to error-free data at a variety of resolutions are displayed in Fig. 1 as a function of parameter-shift angle. By optimizing the parameter-shift angle and using sufficiently high-resolution data, it was possible to achieve a 100% success rate for all three structures, provided that a singleshift angle in the neighborhood of 140° was chosen.

4. Discussion

The results of the experiments reported here underscore the importance of measuring data to the highest possible resolution if direct-phasing methods are to be used to solve a structure. These results also suggest that the solution of $P 1$ structures can be virtually guaranteed if the requirement for high-resolution data is met and the structure is not too large. An accurate estimate of the maximum structure size accessible by Shake-and-Bake cannot be given with certainty, but it has been known for many years that the reliability of the structure invariants, which provide the underpinning for direct methods, decreases as the number of atoms in the unit cell increases (Cochran, 1955). Of the three structures described here, the alpha-1 peptide needs the highest resolution data in order to ensure that conditions can be found where all trial structures converge to solution. This may be related to the fact that the peptide contains only a single chloride ion (information not used in the SnB experiments), whereas several independent Cl or S atoms are present in the other two structures. The effects of heavier atoms on the efficiency and proper parameterization of SnB have been described elsewhere (Weeks \& Miller, 1999b). These experiments also suggest that it may be beneficial in some cases to treat structures in other space groups as if the space group were $P 1$. However, previous attempts to do this have had mixed results (Chang et al., 1997) in terms of computational efficiency.

short communications

Table 2
Effects of measurement error and data completeness on success rates (SR) using the cosine minimal function.

In each case, the resolution limit was the same for experimental and error-free data and 500 trial structures were tested. The SnB default parameter-shift conditions for acentric non- $P 1$ space groups are two 90° shifts. The optimum conditions shown here are single shifts.

Data type	Shift type	Alpha-1		Vancomycin		Lysozyme	
		Angle (${ }^{\circ}$)	SR (\%)	Angle (${ }^{\circ}$)	SR (\%)	Angle (${ }^{\circ}$)	SR (\%)
Experimental	Default	90	13.0 ± 1.5	90	0	90	0
Experimental	Optimum	110	19.8 ± 1.8	120	1.4 ± 0.6	150	25.6 ± 2.0
Error-free	Optimum	110	17.2 ± 1.7	120	0.2 ± 0.2	140	47.2 ± 2.2
Error-free complete	Optimum	110	30.4 ± 2.1	120	19.4 ± 1.7	120	99.0 ± 0.5

We would like to express our appreciation to Melda Tugac for preparing the figures. This research was supported by NIH grant GM-46733 and NSF grant ACI-9721373.

References

Bhuiya, A. K. \& Stanley, E. (1963). Acta Cryst. 16, 981-984.

Chang, C.-S., Weeks, C. M., Miller, R. \& Hauptman, H. A. (1997). Acta Cryst. A53, 436-444.
Cochran, W. (1955). Acta Cryst. 8, 473-478.
Deacon, A. M., Weeks, C. M., Miller, R. \& Ealick, S. E. (1998). Proc. Natl Acad. Sci. USA, 95, 9284-9289.
Debaerdemaeker, T. \& Woolfson, M. M. (1983). Acta Cryst. A39, 193-196.
DeTitta, G. T., Weeks, C. M., Thuman, P., Miller, R. \& Hauptman, H. A. (1994). Acta Cryst. A50, 203-210.

Germain, G., Main, P. \& Woolfson, M. M. (1970) Acta Cryst. B26, 274-285.
Giacovazzo, C. (1998). Direct Phasing in Crystallography: Fundamentals and Applications. Chester/Oxford: IUCr/Oxford University Press.
Hauptman, H. A. (1991). Crystallographic Computing 5: From Chemistry to Biology, edited by D. Moras, A. D. Podjarny \& J. C. Thierry, pp. 324-332. Chester/Oxford: IUCr/ Oxford University Press.
Hauptman, H. A., Xu, H., Weeks, C. M. \& Miller, R. (1999). Acta Cryst. A55, 891-900.

Loll, P. J., Miller, R., Weeks, C. M. \& Axelsen, P. H. (1998). Chem. Biol. 5, 293-298.

Privé, G. G., Anderson, D. H., Wesson, L., Cascio, D. \& Eisenberg, D. (1999). Protein Sci. 8, 1400-1409.
Weeks, C. M., DeTitta, G. T., Hauptman, H. A., Thuman, P. \& Miller, R. (1994). Acta Cryst. A50, 210-220.
Weeks, C. M., Hauptman, H. A., Smith, G. D., Blessing, R. H., Teeter, M. M. \& Miller, R. (1995). Acta Cryst. D51, 33-38.

Weeks, C. M. \& Miller, R. (1999a). J. Appl. Cryst. 32, 120-124.
Weeks, C. M. \& Miller, R. (1999b). Acta Cryst. D55, 492-500.

[^0]: ${ }^{\mathbf{1}}$ Readers unfamiliar with the basic concepts and terminology of direct methods are referred to the recent authoritative book by Giacovazzo (1998).

